

Hermann von Helmholtz, 1821-94 Inventor of the ophthalmoscope "If an optician should try to sell me an instrument possessing such faults, I would feel justified in using the most severe language with regard to the carelessness of his work and return the instrument under protest."

ASTIGMATISM

CONSEQUENCE: The eye has a different refractive error for different visual axes

CAUSES OF ASTIGMATISM

Induced by corneal scarring, edema & SUTURING!!

Paul E Miller

Brian Gilger, Equine Ophthalmology

CAUSES OF AMETROPIA

May be the result of insufficient/excessive refractive power in the lens/cornea

- Excessive refractive power: myopia – Lenticular or corneal myopia
- Insufficient refractive power: hyperopia
 Lenticular or corneal hyperopia

CAUSES OF MYOPIA

- May be the result of increased axial length of the eye
- Vitreal elongation is a common cause of myopia
 - ➢Induced in animal models by optical defocus, visual deprivation...
 - Results from juvenile cataract, corneal opacity...

Муо	Investigative Ophthalmology Copyright @ Association	v& Visual Science, Vol. 33, No. 8, July for Research in Vision and Ophihalmology froctive Error	in Dogs
Chris	stopher J. Murphy,* K	iarla Zadnik,†‡ and Mark J. Mean refractive error	Mannis† % of myopic dogs
Rottweiler	28	-1.77 D	64%
Min. schnauzer	16	-0.66 D	50%
Ger. Shepherd (general pop.)	58	-0.86 D	53%
Ger. Shepherd (guide dogs)	106	+0.19 D	19%

All 3 breeds have lenticular myopia

1043.548871178822.02099 Y OPTOMETRY.AND VISION Capyright 0 2011.6meiuw.di	VOL. HI, NO. 2, 79. 200. 274 S SCHNCE S Chuncoy	_		
Ocul	or ar Componer with High P ra A. Williams*, Melisa A. Ko # of does studied	RIGINAL ARTICLE Its in Three Bree revalence of My abai ¹ , Christopher J. Murphy ¹ , and E	eds of Dogs opia	R
ESS	33	-0.36 D	36.4%	
Collie	14	-0.21 D	35.7%	
Toy Poodle	36	-1.5 D	63.9%	
A 11 2	breeds hav	o lonticular n	avonio	

Naturally Occurring Vitreous Chamber–Based Myopia in the Labrador Retriever

Donald O. Mutti,^{1,2} Karla Zadnik,² and Christopher J. Murphy³

Investigative Ophthalmology & Visual Science, 1999;40:1577-84

- 17/75 (23%) of Labrador retrievers are myopic ≻Range -0.5D to -5.0D
- Myopia due to elongation of vitreous (axial myopia)

Ocular Component	Nonmyopes $(n = 50)$	Myopes $(n = 7)$	P
Vitreous chamber depth (mm)	10.02 ± 0.40	10.87 ± 0.34	<0.0001
Anterior chamber depth (mm)	4.29 ± 0.36	4.16 ± 0.33	0.47
Lens thickness (mm)	7.85 ± 0.51	7.70 ± 0.56	0.26
Keratometer power (D)	36.94 ± 1.98	37.12 ± 2.45	0.67
Equivalent refractive index	1.535 ± 0.027	1.543 ± 0.027	0.55
Anterior lens radius (mm)	7.61 ± 0.55	7.94 ± 0.57	0.23
Posterior lens radius (mm)	8.12 ± 1.29	8.87 ± 0.93	0.14
Equivalent lens power (D)	48.26 ± 3.69	47.00 ± 4.43	0.45

A Canine Model of Inherited Myopia: Familial Aggregation of Refractive Error in Labrador Retrievers Joanna Black¹ Sbaron R. Browning,² Andrew V. Collins,¹ and John R. Phillips¹ Investigative Ophthalmology & Visual Science, 2008; 49:4784-9

- Survey of 116 related Labradors in New Zealand > Mean refractive error -0.4D (!)
- > Myopia in 31% of dogs (range -0.5 to -5.38D)
- > Coat color and sex not correlated, but dogs from small litters more myopic
- >After subtracting effect of litter size, half the variability due to genetics and half to environment

WHY DOES IOVS PUBLISH ABOUT CANINE MYOPIA ?

Myopia is the most common eye disorder in the world!¹

• USA: • Greece:

- 25% of 12-54 year olds are myopic²
- **37% of 15-18 year olds affected³**
- Singapore: 80% are myopic by age 18!⁴
- Huge economic costs
 - LASIK, contact lenses, spectacles...
- Risk factor for other ocular diseases
 Cataract, glaucoma, retinal detachment...

¹Hornbreak and Young, 2009; ²Vitale et al., 2009; ³Mavracanas et al., 2000; ⁴Rose et al, 2008

THE CANINE REFRACTIVE ERROR

Refractive states of eyes and association between ametropia and breed in dogs

Melissa A. Kubai, BS; Ellison Bentley, DVM; Paul E. Miller, DVM; Donald O. Mutti, OD, PhD; Christopher J. Murphy, DVM, PhD

AJVR, 2008;69:946-951

- Retinoscopy performed in 1440 dogs
 CERF clinic
- 90 breeds represented
 >16 breeds were represented by ≥ 20 dogs

MORE GOOD NEWS...

- Nine breeds were defined as emmetropic (+0.5D > refractive error > -0.5D) :
 - > English springer spaniel, German shepherd, Golden retriever, Siberian husky, Shetland sheepdog, Labrador retriever, Border collie, Samoyed and "other" Terriers (Fox, Scottish, Belgian, Boston, Bull, Tibetan...)

THE NOT-SO-GOOD NEWS

- Even in emmetropic breeds, significant number of dogs were myopes:
 - >22.1% of Labradors >21.7% of ESS
 - >24.4% of GSD
- Range of myopia -0.5 to -5.0 D!!!
- These were usually clustered in subpopulations or entire litters!

EVEN WORSE NEWS...

Some breeds have a mean myopic refractive state:

	% myopic	Mean error
Rottweiler	44%	-0.9D
Min. schnauzer	41%	-0.6D
Collie	54%	-0.8D
Toy poodle*	77%	-1.8D
*Up to -6.25D!!!!		

• 25.4% of ALL dogs were myopic!

> 1.5% of dogs were severely myopic (<-4D)

SOME MORE BAD NEWS...

Some breeds have a mean hyperopic refractive state:

63%	+1.3D
59%	+0.6D
61%	+1.0D
	63% 59% 61%

*Up to +3.25D!!!!

• 8% of all dogs were hyperopic

AGE & THE REFRACTIVE ERROR

CATS. Additional factors

- Coat length*:
 - DSH more likely to be myopicDLH more likely to be emmetropic
- Habitat**:
 - Indoor cats: 75% myopic (mean -0.8D)
 - Outdoor cats: 88% hyperopic (mean +1.4D)*
 - Changes are lenticular, not vitreal

*Konrade et al., 2012; **Belkin M et al. 1977

HORSES					
	Mean error	% emmetropia	% myopia	% hyperopia	
Rull-Cotrina et al., 2013 (n = 135)	-0.17 ±0.05D ^a	55	30	15	
Grinninger et al., 2010 (n = 159)**	-0.06 ±0.68D	50	25 ^b	25	
Meister et al., 2018 (n=49)	$+0.32 \pm 0.66 D^{c}$	93	4 ^d	3	
Bracun et al., 2014 (n=333)	?	84	7 ^d	7 ^e	
^a 22% astig ^c emmetrop	matism; ^b preval- ia defined as ±11	ence of myopia); ^d up to 5D my	increases v yopia!;	vith age;	

^e up to 5D hyperopia

\mathbf{O}	- R
Received. 16 July 2022 Revised: 4 Junuary 2023 Accepted: 12 Junuary 2023 ODE. 10.1111/Joep.3384 OR.IG.IN.AL. REPORT	WILEY
Prevalence, differences, and potentia sex, breed, coat color, iris color, and g naturally occurring refractive errors eye from Germany and North Carolir Lauren N. Charnock ¹ Michael G. Davidson ² Del Brian C. Gilger ² Richard J. McMullen Jr. ¹⁴	l correlation to age, eographic location in in the normal equine ha porah A. Keys ¹
 Emmetropia in 56% of ey Anisometropia in 12.5% of Difference >1D between ey 	es (±0.5D) of eyes
 Error affected by sex, iris 	color & location

• Error NOT affected by age, breed or coat color

НО	PRSES
• Thoroughbreds te	Ametropias by breed
Bracun et al., 2014	Rull-Cotrina et al. 2013

abbit (New Zealand White)	1.7 D	Herse (2005)
hicken (Cornell-K)	4.1, 3.7D (4 & 17 weeks old, respectively)	Wahl et al. (2015)
uinea pig (pigmented)	0. 7 D	Howlett & McFadden (2007)
at (Norway brown)	4.7, 14.2D (infant & adult, respectively)	Guggenheim et al. (2004)
ouse (CBL75/6)	-1.5, 4.0D (10 & 102 days old, respectively)	Zhou et al. (2008)

Slatter's Fu

• 199,000 cones/mm²

- CATS
- 27,000 cones/mm²
- 4:1 cone:ganglion cell ratio

V	ISUAL	ACUITY	F
NUME	ER OF GAN	GLION CELL	S
HUMAN	1,200,000	Light	
HORSE	500,000	a la construis	Birthan Providence
DOG	167,000		
САТ	116,000		and the second second
		Human	Feline
			Ofri R et al., 2015
			R

LEGAL	BLINDNE	SS
Cat	6/45	20/150
Legal blindness	6/60	20/200
Rabbit	6/60	20/200
Cow	6/105	20/350
Rat	6/150	20/500
Aphakic dog	6/240	20/800
Mouse	<mark>6/3</mark> 00	20/1,000
Menace response	6/6,000	20/20,000

Ekesten & Ofri. Fundamentals of Animal Vision, 2021

CONCLUSIONS. I. MYOPIA AFFECTS A SIGNIFICANT NUMBER OF DOGS

	% myopic	Mean error
Rottweiler	44%	-0.9D
Min. schnauzer	41%	-0.6D
Collie	54%	-0.8D
Toy poodle*	77%	-1.8D

• 25.4% of ALL dogs were myopic! > 1.5% of dogs were severely myopic (< -4D)

Or in the future		
hopefully you can calculate the IOL power needed to restore emmetropia and grab it from your drawer. All you need is a keratometer & A-mo ultrasound (and a selection of IOL's ©	de)	
$Pe = \frac{1336 \ (4r-L)}{(L-C)(4r-C)}$ $Pe = \frac{N}{L-C} - \frac{NK}{N-KC}$ Binkhorst formula Retzlaff formula		
OF	R	
Extractor (photology 2008 4.5.10°-300 CLINICAL ARTICLE Kerationnetry, biometry and prediction of intraocular lens power in the equinic eye Richen] McMallen Jr and Rine C. Gapret Typewar of the Article Action Conference on Conference on Conference on Conference Table of International Action and Article and Article Action Action Conference Cally of International Action and Article Action and Article Action Action Action Cally of International Action Action Action Action Action Action Action Action Action Cally of International Action Action Action Action Action Action Action Action Action Association of height, body weight, acte.	R	
Add corneal diameter with calculated intraoc lens strength of adult horses Meredith C. Mouney, DVM; Wendy M. Townsend, DVM, MS; George E. Moore, DVM, PI Parmary Spit Janage (2019) 18. Superson 1, 106-112 DOTALITI/way, 2119	ular D	

Biometry, keratometry, and calculation of intraocular lens power for the bald eagle (*Haliaeetus leucocephalus*)* Sonia E. Kuha,* Diane V.H. Hendrik,* Michael P. Jones,* Daniel A. Ward,* Katherine H. Baine* and Stephen R. Fanklard

Next time a 12 year old dog comes to your clinic complaining of decreased vision, and your ophthalmic exam is normal...

